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Abstract 

t1 is the first interop rollup designed to fix fragmentation and composability challenges in 
scaling Ethereum. By leveraging AVS-secured Trusted Execution Environments (TEE), t1 
introduces real-time proofs (RTP) that prove the integrity of t1 execution to Ethereum in less 
time than it takes to create a block on Ethereum (less than 12 seconds). By running partner 
rollup nodes in its node infrastructure, t1 aggregates and proves its state to Ethereum in 
real-time. As a result, t1 enables instant settlement between any combination of partner 
rollups and Ethereum, providing composability. All execution in t1 is cryptographically 
verified via zk-compressed Remote Attestation coming from Intel TDX Trusted Execution 
Environment (TEE), ensuring that state transitions are provably correct, tamper-proof, and 
bound to the current protocol version. In addition to real-time proving, t1 supports 
general-purpose smart contract programmability and enables writes to partner rollups, in 
addition to reading their state. This architecture offers a foundation for building new and 
enhancing existing cross-chain applications—such as yield aggregators, lending protocols, 
and decentralized exchanges—that require fast, programmable interoperability without 
reliance on third-party bridges or message-passing systems. Our mission is to unify 
Ethereum and its rollup ecosystem by creating a real-time proof-powered liquidity layer that 
enables the best user experience on cross-chain applications. 

 

1.​ Problem 

The current rollup-centric scaling strategy has delivered lower fees and higher throughput, at the cost of 
fragmentation. Liquidity and user activity are now spread across hundreds of rollups, forcing developers 
to bring their applications multichain, leveraging third-party bridges and messaging protocols. Despite 
widespread efforts to improve interoperability, the current landscape remains siloed: 

●​ Most L2 interoperability efforts focus on specific rollup stacks rather than the entire 
ecosystem. These efforts reduce the number of siloes yet solidify existing siloes rather than 
eliminating them. 

●​ Interoperability protocols enable message passing and proof generation, but forego the 
benefits of programmability. As a result, each chain remains a siloed execution environment. 
Users must take separate actions on each chain, adding friction, cost, and fragmentation. 
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●​ Real-time Zero Knowledge Proving is far from reality, both because of proving times, but also 
the complexity and bug potential of zkVMs. We expect real-time ZKP to be at least 2 years out. 

As a result, no existing application can offer a seamless, cross-chain user experience today without the 
complexities of introducing third-party bridges or messaging protocols. Without a fundamental shift in 
how interoperability is achieved, Ethereum risks scaling into a fragmented network where composability 
remains trapped within silos. 

2.​ Solution 

t1 introduces a Trusted Execution Environment (TEE) enabled real-time proving (RTP) rollup to solve 
fragmentation in the Ethereum ecosystem today. 

Real Time Proving 

Real-time proving allows t1 to prove its state to Ethereum every block. This means; 

●​ Users can enjoy the low cost and high speed of rollups while their assets effectively remain on 
Ethereum. Funds on t1 can be withdrawn to an L1 wallet in the same block, making interacting 
with t1 feel similar to interacting with a smart contract on L1. 

●​ Applications on Ethereum or rollups can access t1 state (liquidity) because both are proven to 
Ethereum every block 

●​ Applications on t1 can verify state changes in Ethereum and partner rollups and create 
cross-chain proofs. This is achieved by running multiple partner rollup full-nodes in the t1 node 
infrastructure. 

Programmability 

Programmability enables 𝚝1 to do more than just Real-Time Proving. Smart contracts create a 
programmable hub for liquidity and cross-chain interactions. Programmability enables currently off-chain 
components, such as relayer/solver networks for ERC-7683 protocols, to be brought on-chain. 
Programmability also enables t1 to become a cross-chain liquidity hub in addition to just being a bridge or 
a proving system that just passes proofs across blockchains. This means we can build cross-chain 
collateral accounts, lending/borrowing primitives, and orderbooks on t1, while other proving systems can 
only pass messages. 

Furthermore, t1’s architecture is designed to create cross-chain application experiences without needing 
buy-in from any rollup or application. In that sense, t1 is the only truly permissionless cross-chain 
application interface. 

3.​ What are TEEs and how do they help? 

Trusted Execution Environments (TEEs) are specialized hardware-based environments that isolate 
sensitive computations and data from the rest of the system, ensuring that data is processed correctly and 
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privately. In particular, TEEs provide verifiable computation guarantees through a process called “Remote 
Attestation,” which proves to external parties that the TEE is running a specific, unmodified piece of 
software (bytecode) without any tampering. Verifiers can then use this attestation to confirm that a TEE’s 
output is trustworthy. Additionally, TEEs can preserve privacy by keeping sensitive data and execution 
logic concealed from the system operator and external observers. In other words, TEEs are secure 
hardware areas that protect sensitive data and computations from tampering or unauthorized access. 

Two key requirements for achieving full unification of Ethereum and the rollup ecosystem, without reorg 
risks and asynchrony, are shared sequencing across all chains and real-time proving (RTP). At t1, we are 
working on RTP by employing TEEs. However, TEEs also help with cross-chain composability by 
enabling follower nodes in t1 to reliably read data from and write data to partner rollups. This setup 
allows t1 to aggregate the state of Ethereum and partner rollups effectively. Our design, which does not 
rely on shared sequencing, enables t1 to have as low as a single-block asynchrony window (12 seconds) 
with Ethereum—a substantial improvement over the current seven-day window in Optimistic Rollups and 
hours-long window in Zero-Knowledge Rollups. 

In addition to RTP and cross-chain communication, TEEs allow t1 to offer an encrypted mempool. An 
encrypted mempool prevents adversarial reordering, such as sandwich attacks, where an attacker observes 
a pending user transaction and places trades before (front-running) and after (back-running) it, profiting at 
the expense of regular users. Sandwich attacks cost Ethereum users over $100mn every year. An 
encrypted mempool or ephemerally private blockspace also facilitates use cases like sealed-bid auctions 
and information incomplete games. 

4.​ Architecture 

4.1.​ Protocol design 

t1 is an EVM-based rollup that generates real-time proofs to provide cross-chain application 
infrastructure. t1 combines the verifiable computation guarantees of Trusted Execution Environments 
(TEE) with additional defense layers such as economic security (AVS) and bespoke zero-knowledge 
proofs (ZKP) to enable fast and secure proof generation. t1 has two network stakeholders: 

●​ Sequencers are a highly decentralized set of nodes tasked with blindly finalizing the ordering of 
encrypted transactions in a t1 bundle before it becomes a block. Since Sequencers only order 
transactions rather than execute them, we can achieve high decentralization and censorship 
resistance. Sequencers create Sequencing Consensus 

●​ Executors are TEE-enabled nodes tasked with executing state changes given the finalized 
sequences of transactions determined by the Sequencers (i.e., turning bundles into blocks and a 
new state). Executors provide proof of Execution Consensus. 

t1 produces blocks every second. Each block involves two sequential steps: 

●​ Tx data broadcast and bundle finalization by Sequencers (Sequencing Consensus proof) 
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●​ Execution into a block and agreement about the new state, reached by TEE-enabled Executors 
(Execution Consensus proof). 

Both Sequencing Consensus and Execution Consensus are required to update the state of t1 (aka trie root 
tuple) on Ethereum, only then enabling “convincing” t1 bridge contracts on Ethereum and partner rollups 
to, e.g., release their funds to withdrawing users. 

As t1 gradually becomes a fully permissionless network, it’s essential to implement mitigations against 
potential TEE exploits and develop defense-in-depth strategies. To this end, t1 leverages two sets of 
EigenLayer Autonomous Verifiable Services (AVS) validators to derive its crypto-economic security from 
restaked assets, providing a programmatic insurance budget on top of TEE guarantees. 

However, an attacker controlling more than the crypto-economic security of the Execution AVS stake and 
also the necessary TEEs (that they managed to compromise) could produce an integrity proof for a 
fraudulent new state of t1. For this attack to be economically viable, the value-at-risk would need to be 
higher than the slashable Execution AVS stake. To ensure that t1’s economic activity is not bound by this 
security budget, we introduce a bespoke ZKP mechanism as an additional defense layer: t1 uses 
incentivized periodic ZKP to create checkpoints. When cumulative value-at-risk since the last checkpoint 
is about to exceed the crypto-economic security budget, the Canonical Bridge will require the provision 
of an on-demand ZKP before it accepts such a new t1 state—halting finalization until then. However, with 
adequate t1 gas price policies incentivizing proactive checkpoint creation, we don’t expect this situation to 
ever happen under normal conditions, achieving a good tradeoff between finalization latency and 
hard-times resilience. 

Note: ZKP generation will likely be outsourced to another network that can meet the latency and cost 
requirements. 

Figure 1: Architecture diagram
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4.2.​ Flow 
1.​ A user, Alice, deposits funds to a t1 bridge contract on Ethereum or on a Partner Rollup. Once 

the deposit is confirmed on the source chain, it gets processed by t1, and Alice gets her funds 
credited towards her aggregate t1 balance. 

2.​ Alice changes her wallet’s network to t1, creates a t1-native transaction (with some fields 
encrypted to the shared rotating TEE pubkey), uses her wallet to sign it, and submits it to the 
network (i.e. the t1 mempool); this may or may not be a specially-treated withdrawal transaction 
(to Ethereum or a Partner Rollup). 

3.​ A t1 Sequencer receives and gossips such a partially-blind transaction to other Sequencers in the 
t1 Sequencing AVS network. 

4.​ After collecting transactions for one t1 slot (currently set to one second), the slot-leading 
Sequencer proposes an ordering (a blind non-executed bundle). The rest of the Sequencers vote 
on it using Espresso HotShot to form a Sequencing Consensus. This bundle and a proof of 
Sequencing Consensus is then passed on to the Execution AVSnetwork. 

5.​ t1 Executors validate the proof of Sequencing Consensus, decrypt the encrypted parts of the 
received bundle (if needed and due) using their TEE-derived shared rotating private key, and 
execute its now fully plaintext ordered transactions against the current state of the t1 blockchain. 
The slot-leading Executor proposes a new trie root tuple r of state trie root, withdrawals trie root, 
and proof-of-read trie root—and the rest of the Executors vote on such new trie tuple r to form 
Execution Consensus. 

○​ Note: Executors use follower nodes also running in TEEs to read from and write to 
Partner Rollups(whenever required by a t1 tx). 

6.​ The Execution AVS posts t1’s new trie roots r and all the corresponding consensus proofs to the 
Ethereum t1 Canonical Bridge contract and the full compressed transactions to Ethereum blob 
DA. 

○​ In addition, t1 progressively incentivizes the generation and posting of periodic ZKPs to 
the Canonical Bridge on Ethereum to create ZKP checkpoints, resetting the value-at-risk 
counters and also speeding up the potential on-demand ZKP creation when required. t1 
dynamic gas pricing considers how much AVS security budget is still available to reach 
an equilibrium. 

○​ In the rare event that new t1 transactions’ (as per all new trie root tuples) cumulative 
value since the last ZKP checkpoint, despite the mechanisms above, would exceed the 
crypto-economic security budget provided by Execution AVS, also an on-demand ZKP is 
required by the Canonical Bridge, pausing finalization until then; this would increase the 
withdrawal delay to hours under such extreme conditions. 

7.​ t1’s Canonical Bridge contract on Ethereum checks the new submitted t1 trie root tuple r, 
Sequencing Consensus,Execution Consensus, and transaction data availability for consistency. If 
successful, such r is accepted. This then generally facilitates withdrawals from t1 to Ethereum 
with a single-Ethereum-block delay only (i.e. 6 seconds on average). 

○​ Suppose Alice had desired to withdraw funds in step 2. She may now submit to the 
Canonical Bridge an Ethereum claim transaction with an inclusion proof of her 
withdrawal transaction in t1 (as contained within the withdrawal trie committed to in r). 
The contract then releases the funds to Alice on Ethereum. 
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8.​ If Alice wishes to withdraw funds to her account on a Partner Rollup rather than on Ethereum, 
the same trie root tuple r update in the Canonical Bridge (i.e., on Ethereum) is required as in 7. 
However, she submits the claim transaction with an inclusion proof of the withdrawal to the 
(non-canonical) t1 bridge contract on Partner Rollupinstead. The Partner Rollup bridge contract 
verifies the inclusion proof with respect to r as accepted by the Canonical Bridge on Ethereum 
(using Partner Rollup’s Ethereum read abilities, usually via Partner Rollup’s own L1 canonical 
bridge) and then releases the funds to Alice on Partner Rollup. 

4.3.​ Bridge Contracts 

t1 leverages its contracts on Ethereum and rollups to accept deposits into t1 and allow users to withdraw 
funds from t1 back to their blockchain of choice. 

Ethereum’s contract acts as the Canonical Bridge where t1 trie root updates are posted. Their validity is 
ensured by verifying Sequencing Consensus, Execution Consensus, and the data availability commitment 
to a blob posted on Ethereum (DA). Therefore, this contract is the source of truth for t1 state. 

Withdrawals to Ethereum can be enabled immediately after a transaction updates this contract, by a 
further “claim” transaction carrying a Merkle proof, on L1 or Partner Rollup itself. Withdrawals on 
Partner Rollups require the local t1 bridge contract to check the state of the Canonical Bridge on 
Ethereum before the funds can be released to the user on Partner Rollup. The state of the t1 Canonical 
Bridge can be relayed to the Partner Rollup via the arbitrary message passing capability of the Partner 
Rollup’s own Canonical Bridge. This approach prevents attacks that could otherwise result in 
double-spend due to reorgs. 

4.4.​ Sequencers 
In t1, Sequencers sequence and broadcast partially-encrypted transactions, forming a consensus on a blind 
block order (“bundles”), which is then passed to Executors for execution. Most of the rollups nowadays 
utilize single-sequencer designs, compromising security for speed; also, usually both sequencing and 
execution are performed by a single entity, leading to little censorship resistance. We want to separate 
sequencing (broadly accessible) and execution (higher hardware requirements, esp. a TEE) to allow for 
fast, decentralized consensus, offering strong resistance to censorship and bribery, while minimizing 
MEV from transaction ordering. 

t1’s long-term design employs Espresso Systems' HotShot Consensus, a BFT protocol adapted for PoS, 
enhancing decentralization. Sequencers, part of t1's AVS, use restaked stake with slashing conditions to 
maintain security and integrity in transaction sequencing. 

4.5.​ Executors 
TEE-enabled Executors oversee the current state of t1 by running transactions from Sequencer-ordered 
blind bundles and establishing consensus on the new state. They utilize t1VM, a TEE-optimized and 
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interop-enriched version of Reth, which ensures full backwards compatibility with Ethereum while adding 
cross-chain-composability-specific capabilities such as reading a chain's contract method or requesting a 
write call to it. An Ethereum full node is maintained within the Executor for streamlined interaction with 
the canonical bridge, while follower nodes (clients) for other rollups run by the Executor allow for 
real-time state monitoring and interactions with them, without the delays usually required for fraud or 
zero-knowledge proofs. t1VM includes unique capabilities powered by Reth’s ExEx, enabling Executors 
to interact with both Ethereum and other (partner) rollups from within t1's Solidity smart contracts. 

Executors operate under a leader-based, instant-finality PoS Byzantine Fault Tolerant consensus system, 
representing the second category of t1's AVS, and they are liable to slashing to enforce system integrity. 

All execution happens inside Intel TDX-based TEEs, which cryptographically isolate the runtime logic 
and protect it from tampering, even by the host OS. Before processing transactions or joining Execution 
Consensus, each Executor must successfully complete a hardware-backed Remote Attestation, as detailed 
in the Remote Attestation Design and Enforcement. 

4.6.​ Special Opcodes for Cross-Chain Composability 
The t1VM, based on Reth and optimized to run within Intel TDX enclaves, introduces several custom 
precompiles and execution extensions (ExEx) to support seamless cross-chain programmability. These 
opcodes are enclave-executed thanks to co-located Partner Rollup follower nodes. 

These special instructions allow t1 smart contracts to: 

●​ xchain.readState(uint64 chain, bytes calldata data)​
Query the state of a remote Ethereum or Partner Rollup contract in near-time, using 
enclave-hosted follower nodes. Reads are cached and committed via proof-of-read trees in block 
headers. 

●​ xchain.sendTx(uint64 chain, bytes calldata data)​
Submit transactions to Ethereum or Partner Rollup mempools from inside a t1 VM contract, 
enabling best-effort multi-chain coordination.​
While the transaction submission is initiated synchronously from within t1 VM, its inclusion and 
execution on the target chain are asynchronous processes. Smart contracts must be designed to 
handle potential failure, delayed inclusion, or rollback by relying on callback patterns, event 
monitoring, and appropriate timeout handling. 

●​ xchain.sendTxAs(address user, uint64 chain, bytes calldata data)​
Relay transactions to other chains on behalf of a user, enabling use cases like delegated 
execution, paymasters, or cross-chain proxy control. 

●​ xfeed.queryPrice(string feedId, uint64 timestamp)​
Access a signed price feed snapshot (e.g., from a partner CEX or L1 oracle) as of a specific 
timestamp, as observed by the enclave. This enforces deterministic read behavior, allowing values 
to be committed into the proof-of-read trie and enabling reproducibility across replays. Suitable 
for use in collateral valuation, liquidation triggers, or TWAP rebalancing. 
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All read-based opcodes, such as xchain.readState and xfeed.queryPrice, are executed inside the TEE, and 
their outcomes are committed into a proof-of-read trie, which is included in the block header and 
committed to Ethereum. Remote reads are deterministically committed to Ethereum L1 via a 
proof-of-read trie, ensuring verifiability and auditability of all external dependencies in t1 state 
transitions. 

In contrast, transaction submission opcodes, such as xchain.sendTx and xchain.sendTxAs, initiate 
asynchronous best-effort actions toward external chains. These are not committed to the proof-of-read 
trie. Instead, applications using these opcodes must be designed to handle external success or failure 
events explicitly, through callback patterns, confirmation monitoring, or timeout strategies. 

4.7.​ Further rollup node subnetworks  
Additional subnetworks may appear in the broader t1 ecosystem where some TEE-enabled Executor-style 
nodes, probably running as an AVS, provide light-client-like “oracle” services to e.g. t1 Executors who 
wish to act upon the latest (low-latency) state in some other (possibly arcane/insecure) rollup/L2. These 
could come with an insurance fund or marketplace for reorgs and other rollbacks, e.g., caused by a 
technical issue, security council breach, etc. 

Such a subnetwork may or may not be operated by the same physical node operator and on the same 
hardware as a t1 Executor. t1 is being built in a modular way such as to facilitate tangential applications 
of this sort via a robust shared infrastructure layer. It is conceivable that different smaller subnetworks 
may emerge to account for the different, possibly fine-granular security, latency, liveness, etc., 
requirements per Partner Rollup. 

4.8.​ Mempool encryption 
t1 has an encrypted mempool that is designed to eliminate ordering-related MEV. The system uses a 
rotating private key shared among t1 Executors that remains sealed within the TEE. As a result, 
transactions partially encrypted to the corresponding shared public key, which Sequencers order into 
partially encrypted bundles, can only be decrypted inside Executors, for execution, allowing the creation 
of the block with its new state. Once transactions are executed, their full plaintext content is made public, 
and anyone is able to reproduce the computed state. 

4.9.​ Remote Attestation Design and Enforcement 
t1 leverages Intel TDX-based Trusted Execution Environments (TEEs) to ensure that state transitions are 
executed within secure, hardware-isolated environments. However, enclave security alone is insufficient 
without a mechanism to prove—publicly and succinctly—that these nodes are indeed running 
unmodified, audited software. 

To that end, t1 runs the full DCAP quote-verification logic inside a Risc0 zkVM and compresses the trace 
into a Groth16 proof ≈ 200 bytes. A single proof is emitted only when a validator (i) first joins, (ii) 
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upgrades to a new image hash, or (iii) refreshes its TCB after Intel raises the minimum SVN. 
NodeRegistry verifies that proof once, stores the validator’s pubkey + measurement as active, and 
thereafter needs only an ordinary ECDSA signature on each block. 

Binding attestation to protocol state and mempool key 

t1 leverages Intel TDX-based Trusted Execution Environments (TEEs) to ensure that state transitions are 
executed within secure, hardware-isolated environments. These enclaves expose hardware-backed remote 
attestation capabilities that allow the network to verify—cryptographically and succinctly—that every 
node runs a known, trusted configuration. 

Each attestation report includes multiple fields: 

●​ report_data — A 64-byte custom field set by the enclave at launch, it commits to 
○​ validatorPubKey – the enclave’s long-lived signing key; 
○​ currentProtoVersion – governance-set tag bumped on every allowed-measurement 

change; 
○​ HashPubHPKE – the hash of the epoch mempool-encryption public key; 
○​ nonce – 256-bit challenge issued by NodeRegistry to prevent replay. 

●​ RTMR3 — A cryptographic measurement (SHA-384) of the enclave’s runtime configuration, 
such as the Docker Compose manifest, root filesystem hash, and other application-specific 
initialization data. 

●​ imageId — A unique identifier for the expected software binary or container image (e.g., a hash 
of the enclave codebase). 

The zkVM verifies that the Quote’s signature chain is intact, the TCB SVN ≥ minTCB, 
REPORT_DATA matches the supplied nonce and protocol parameters, and that the TD measurement 
appears in the on-chain allow-list Merkle root. The proof’s public outputs (validatorPubKey, 
measurementHash, HashPubHPKE) are recorded in NodeRegistry; any later block signed by a key 
absent from this active set is rejected. 

zkVM Proof Compression 

Once the TD Quote is generated by the Executor enclave, it is passed into a dedicated zero-knowledge 
virtual machine (zkVM), such as RISC Zero, which serves as an off-chain attestation verifier. The 
zkVM performs a full cryptographic validation of the TDX quote, including all relevant fields, and 
outputs a succinct proof that can be efficiently verified on-chain. 

The zkVM verifier performs the following steps: 

1.​ Quote Parsing​
It deserializes the TD Quote structure and extracts key fields, including: 

○​ report_data – the verifier-defined 64-byte binding value, 
○​ RTMR3 – the measured runtime hash, 
○​ imageId – the identity of the runtime image, 
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○​ TDX report metadata and signature. 
2.​ Signature and Certificate Validation​

It validates the Intel DCAP certificate chain, confirming the quote was generated by a genuine 
Intel TDX-capable CPU using a valid Provisioning Certification Key (PCK) signed by Intel. This 
ensures the enclave is rooted in hardware trust. 

3.​ Attestation Field Checking​
The zkVM enforces that: 

○​ report_data matches the expected constants 
○​ RTMR3 equals the known good runtime measurement corresponding to the declared 

imageId, 
○​ The claimed imageId is part of the protocol's published set of approved executor images. 

4.​ Public Output Commitment​
After verifying the quote and all integrity constraints, the zkVM outputs the attested 
values—imageId, RTMR3, report_data, and an attestation passed flag—as public data in the 
proof’s journal. These values are included as public inputs to the zkSNARK, allowing any 
on-chain verifier contract to enforce attestation rules based on them. 

5.​ Proof Generation​
The zkVM emits a succinct zero-knowledge proof (e.g., a STARK or SNARK) that confirms:​
“A valid TDX quote signed by Intel proves the enclave with imageId ran a trusted runtime 
matching RTMR3, and correctly reported report_data = X.”​
This proof is submitted alongside: 

○​ Node registration requests, i.e., in NodeRegistry, 
○​ Claims of protocol version compliance, e.g, in smart contract upgrades. 

 

On-chain verifier contracts, such as the Canonical Bridge or Node Registry, do not inspect the raw 
quote but instead validate the zkSNARK. These contracts check that: 

●​ The zk-proof is cryptographically valid and corresponds to the expected zkVM circuit 
●​ The attested report_data matches the expected constants 
●​ The RTMR3 is one of the currently whitelisted runtime hashes for the declared imageId 
●​ The imageId is recognized and not revoked 
●​ The node is not already slashed or removed from the active set 

By relying on zk-compressed attestation, t1 achieves a trust-minimized, gas-efficient enforcement of 
enclave integrity, with all sensitive quote validation logic occurring off-chain in a reproducible zkVM 
program. 
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Enclave-Keyed Access and Upgrade Safety 

To decrypt and process encrypted user transactions, Execution AVS nodes require access to a shared 
mempool decryption key. This key is sealed to the enclave and is only provisioned to nodes that have 
passed remote attestation, verified via zk-compressed TD Quotes. 

The attestation proof must confirm that the enclave: 

●​ Runs a permitted executor imageId, 
●​ Measures the expected runtime configuration (RTMR3), 
●​ Reports a fresh nonce bound into report_data, 
●​ Declares validatorPubKey and HashPubHPKE that match the on-chain epoch constants, 
●​ Reveals a CPU/TDX SVN not lower than minTCB, 
●​ Embeds the current protocol tag currentProtoVersion in report_data. 

Only then can the node receive the decryption key from existing peers in the network. Key transfer is 
performed through an in-enclave, mutually-attested ECDH handshake: 

●​ Both TDs verify that the counterparty’s Quote hash and validatorPubKey are marked as active in 
NodeRegistry. 

●​ They derive a session key from ECDH entirely inside their respective enclaves. 
●​ The live node re-wraps the sealed root_secret under that session key and transmits it; the 

newcomer unseals it and deterministically derives its HPKE keys.​
Unverified or inactive nodes cannot complete this handshake and therefore never obtain the 
decryption key. 

Whenever the protocol is upgraded—such as a new Canonical Bridge version, runtime logic revision, or 
dependency patch—t1 Security Council simultaneously (i) bumps currentProtoVersion, (ii) publishes an 
updated Merkle root of allowedMeasurements, (iii) may raise minTCB, and (iv) schedules an 
epoch-wide HPKE key rotation by emitting HashPubHPKE′. These values define the next valid executor 
configuration. 

Execution AVS validators enforce this policy by accepting only nodes that submit zk-compressed 
attestation proofs verifying these exact values. Executors must re-attest using the new configuration in 
order to regain access to the sealed mempool key and resume consensus participation. Until they do, the 
attested-ECDH channel refuses to deliver root_secret, instantly disabling their ability to decrypt new 
transactions or sign blocks. This mechanism ensures that outdated or forked nodes are cryptographically 
excluded from transaction execution and state transition, providing strong upgrade enforcement at both 
the enclave and consensus levels. 

By binding sealed key access to a multi-factor enclave attestation—checked off-chain in a zkVM and 
enforced on-chain by verifier contracts—t1 achieves robust upgrade safety and execution integrity 
without relying on manual trust or off-chain coordination. 

A complete formal specification of the attestation pipeline can be found in the companion document 
[Draft] TEE Architecture and Remote Attestation in t1. 
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4.10.​ Data availability 

In addition to the new trie roots and Sequencing Consensus and Execution Consensus proofs going to L1, 
the full (yet compressed) transactions (inputs to the state transition function) are posted on Ethereum as 
blobs by the Executors, and their availability is checked by the Canonical Bridge when validating a new 
proposed trie root tuple. This enables anyone to recreate the state of t1 (but for what happened since the 
last Ethereum block, so on average for a maximum of 12 seconds) from trusting Ethereum and Ethereum 
alone. This also supports forced transaction inclusion. 

4.11.​ Forced tx inclusion (incl. exit) 

If the t1 rollup is down, any user can submit their “self-sequenced” t1 transactions (that may include, e.g., 
liquidating a position and then withdrawing to Ethereum) to the Canonical Bridge contract on Ethereum. 

5.​ Infrastructure partners 

Automata DCAP 

Automata provides an open-source implementation of Intel’s DCAP remote attestation framework, 
enabling trusted enclave verification without relying on Intel’s centralized services. t1 leverages 
Automata’s DCAP tools inside Executor nodes to generate and validate TD Quotes, forming the basis for 
zk-compressed Remote Attestation proofs. This ensures that only nodes running verified enclave software 
participate in Execution Consensus, anchoring hardware trust into Ethereum via zk verification. 
Automata’s work allows t1 to decentralize TEE validation, maintaining security even as the network 
grows permissionless. 

EigenLayer AVS 

EigenLayer’s Autonomous Verifiable Services (AVS) system allows new protocols to inherit Ethereum’s 
economic security through re-staking. Stakers from Ethereum can re-stake their assets, like ETH, into an 
AVS, which secures another service, beyond Ethereum, like Sequencer and Execution Consensus for t1. 
This model gives new chains like t1 the ability to bootstrap security without building independent 
validator sets (leading to inefficiently locked-up capital). EigenLayer includes strict slashing mechanisms 
to align validator incentives across networks, ensuring that re-staked validators are punished for 
misbehavior, maintaining strong decentralized security. 

Espresso Hotshot Consensus 

Espresso’s Hotshot consensus enables finalizing block contents with low latency by utilizing a 
leader-based protocol that minimizes coordination overhead. HotShot employs a highly decentralized set 
of nodes, where blocks are proposed by a leader and validated through multiple rounds of voting to ensure 
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consensus. The protocol is designed for scalability and achieving finality within a second, even under 
high network load conditions, all while maintaining decentralization and security by involving many 
participating nodes in the consensus process. 

RFQ bridges 

As t1 targets to solve cross-chain composability and UX challenges, it must provide a world-class 
experience for users wanting to withdraw tokens from t1 to partner chains. The t1 bridge contract on the 
destination chain first facilitates such a withdrawal. However, there’s no guarantee that the t1 contract has 
enough assets for the withdrawal. If it doesn't, t1 will tap into RFQ bridge protocols, quickly moving 
funds between the different t1 bridge contracts in the background, all to ensure users can seamlessly 
withdraw tokens to their address on any destination chain. 

6.​ Security 

Reorgs 

t1 is building a real-time proving rollup that enables near-instant cross-chain settlement without waiting 
for long confirmation delays. This significantly enhances user experience and application composability 
across Ethereum and partner rollups. However, this design introduces finality risk — the chance that a 
transaction could be rendered void due to a reorg in one of the chains involved. To address this, t1 
employs multiple tactics outlined below. 

Firstly, t1 reorgs together with the L1. When this happens, the user experience on t1 is identical to the user 
experience on the reorged L1. Basically, the transaction never takes place. It’s also worth noting, reorgs 
on Ethereum are rare: Since the Merge to Proof-of-Stake, ~0.059% of Ethereum blocks have been reorged 
(almost always one-block deep, with only 4 instances of 2-block reorgs). Moreover, rollups that use 
centralized sequencers have even lower reorg risk. 

The main practical reorg risk arises when the source chain (from which a deposit was made to t1) reorgs 
after relevant funds were already withdrawn out of t1 to the third chain. In this rare scenario, t1 would be 
out of funds. There are some approaches we are considering to alleviate this problem: 

●​ Inclusion preconfirmations: An inclusion preconfirmation is an optimistic crypto-economic 
guarantee that the deposit transaction will be included in the source chain. Since inclusion 
pre-confirmations are independent of both ordering and execution success, they are rather cheap. 
An inclusion pre-confirmation would guarantee that even in the event of a reorg on the source 
chain (e.g. a late block on Ethereum), a t1-depositing transaction will eventually make it to the 
source chain. However, its success is not guaranteed as a malicious user could e.g. have their 
funds spent before the block is created for which the preconf had been given. This would result in 
the t1-depositing tx to be correctly included, albeit as a reverting tx. 

●​ Execution-success preconfirmations: These optimistic crypto-economic guarantees also bind the 
sequencing entity to ensuring that a given tx succeeds (i.e., not revert), not just that it be included. 
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They are expected to be more expensive, but would allow for fast deposits secured up to the 
crypto-economic threshold of the slashable stake of the sequencing entity. 

●​ Insurance pools: t1 can introduce an insurance pool for fast deposit-and-withdrawals and keep 
track of which portion of all deposits is final and which is still prone to reorgs, thus also capping 
the maximum loss. This is effectively the purpose that solvers serve today in intent-based 
bridging and cross-chain swaps. Such instant deposit-and-withdrawal actions can require a certain 
premium fee that would go to an insurance pool so that potential source-chain-reorg-related losses 
can be covered by the insurance pool. In the absence of preconfirmations, the size of instant 
deposit and withdrawals would be limited by the size of the insurance pool. 

Reorgs are a risk that needs to be accounted for in any on-chain architecture; although they are rare, they 
can happen. t1’s approach to reorgs is risk-based and strikes a balance between enabling a good user 
experience, providing the right functionality, and accounting for the worst-case scenario. 

7.​ Native 𝚝1 applications 
Applications built natively on 𝚝1 leverage real-time proving and are designed to provide a better user 
experience with seamless cross-chain coordination. We’re still early in uncovering all of the possibilities 
real-time proving enables, but have identified a few primitives that are uniquely enabled by 𝚝1: 

●​ Cross-chain vaults, non-custodial cross-chain yield optimization that automates yield discovery 
and rebalancing across rollups. Using t1’s real-time proving (RTP) interoperability infrastructure, 
funds move between lending protocols and yield sources. 

●​ Cross-chain loans enable users to deposit collateral into lending contracts on any partner rollup, 
while market makers borrow against these deposits through t1’s cross-chain collateral accounts to 
fill intents. Loans can be settled and returned to the origin chain within one minute, with a share 
of bridging fees passed back to depositors as yield. This design reduces capital requirements for 
borrowers while delivering competitive, real-demand-driven returns to lenders. 

These use-cases build TVL on t1 and empower the network to become a programmable liquidity layer 
that any connected chain can tap into. Thanks to RTP, t1 eliminates the fragmentation of liquidity across 
isolated ecosystems and enables applications to operate as if liquidity were unified. 

t1 is also designed to enhance the functionality of existing applications. For Ethereum L1 applications, t1 
offers an execution environment with significantly lower costs while maintaining composability with 
Ethereum, enabling applications to scale. Appchains and rollups can leverage t1’s infrastructure to access 
cross-chain liquidity without the need for custom integrations or shared sequencer agreements. By being 
as a permissionless interop layer, t1 allows partner applications to improve capital efficiency and offer 
better UX. 

Today, applications need to deploy on multiple rollups to meet user demand. In the future, 
applications built on t1 will be able to serve users across multiple rollups by deploying on t1 alone. 
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Glossary 

TEE 
 
Trusted Execution Environments (TEEs) are specialized hardware-based environments that isolate 
sensitive computations and data from the rest of the system, ensuring that data is processed correctly and 
privately. In particular, TEEs provide verifiable computation guarantees through a process called “Remote 
Attestation” which proves to external parties that the TEE is running a specific, unmodified piece of 
software (bytecode) without any tampering. Verifiers can then use this attestation to confirm that a TEE’s 
output is trustworthy. Additionally, TEEs can preserve privacy by keeping sensitive data and execution 
logic concealed from the system operator and external observers. In other words, TEEs are secure 
hardware areas that protect sensitive data and computations from tampering or unauthorized access. 

ZKP 

A zero-knowledge (ZK) proof is a cryptographic protocol that enables one entity (the prover) to convince 
another one (the verifier) that a particular claim is true without disclosing any details about the claim 
itself. ZKPs used in blockchains are additionally succinct, meaning that the work required by the verifier 
to check the proof is substantially smaller than the work of re-running the computation required to reach 
the claim independently. 

AVS 

AVS is a term coined by EigenLayer that refers to services or applications built on top of the Ethereum 
blockchain and used for security and validation mechanisms. These services could include rollups, DA 
layers, interoperability protocols, etc. It allows Ethereum validators to use their staked assets to provide 
security to other applications built on EigenLayer. 

Reth 

Reth (Rust Ethereum) is an Ethereum execution node implementation focused on being user-friendly, 
modular, and efficient. Reth is an execution client compatible with all Ethereum consensus client 
implementations that support the Engine API. As a full Ethereum node, Reth will allow users to sync the 
complete Ethereum blockchain from genesis and interact with it (and its historical state, if in archive 
mode) once synced. 

Reth ExEx 

Execution Extensions aka ExEx is a feature of Reth that allows developers to receive comprehensive data 
about a newly “mined” block in an observer-listener pattern. Thanks to this, developers can perform 
actions based on certain changes on the blockchain in an efficient and seamless way. 
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Real-Time Proving (RTP) 

RTP is the ability to prove state transitions in a rollup within one base layer block, which is 12 seconds for 
Ethereum L1. Real-time proving, for example, allows rollup deposits to be withdrawn immediately 
(real-time settlement). 

Sequencer 

Sequencers are a highly decentralized set of nodes tasked with blindly finalizing the ordering of encrypted 
transactions in a t1 block. Since Sequencers only order transactions rather than executing them, we can 
achieve high decentralization and censorship resistance. Sequencers create Sequencing Consensus. More: 
Sequencers. 

Executor 

Executors are a network of TEE-enabled nodes tasked with executing state changes given the ordered 
sequences of transactions (i.e. bundles) determined by the Sequencers. Executors provide proofs of 
Execution Consensus. More: Executors. 

Figure 2: Roadmap 

Now, how do we get there? Voila! 🙂 
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